Green Roofs in Las Vegas, Nevada: An Urban Heat Island Mitigation Strategy Proposal

Team #7: Jaelyn Law jslaw@uci.edu, Olivia Sirchio osirchio@uci.edu, Cecilia Kuang cskuang@uci.edu, Milena Raeber mraeber@uci.edu, Sarah Wu sarahsw1@uci.edu

Introduction

- Urban heat islands (UHIs): intensified climate impact
- UHIs: concentrated infrastructure, limited green spaces¹
- Las Vegas: severe UHI, public health risk², high energy consumption³
- Addressing UHI: crucial for sustainability, reduced environmental impact

Approach

- Strong negative correlation between heat & income⁴
- Focus \rightarrow help alleviate UHI effect and bridge heat inequity
- Propose implementing green roofs in regions with higher temperatures and more vulnerable communities
- Green roofs cool down surrounding areas through evapotranspiration⁵
- Proposal focuses on minimization: green roofs require minimal land area + minimal irrigation

Proposal

- Low-profile green roofs for Janice Brooks Bay and Eva Garcia Mendoza Plaza buildings
 - Grassy, hardy, succulent-type plants
- High-profile green roof/community garden for the Harry C. Levy Garden building
 - Taller, food plants
- Drought-tolerant plants that use less water for Las Vegas climate
- Retrofitting cost considerations:
 - materials (soil, plants, insulation, etc.)
 - extra structural support for weight⁶
- We expect them to lower roof surface¹ temperatures and average city temperatures
- Green roofs also have a longer life span, increased energy efficiency⁷
- \$3.5 million total (about \$2m for materials)

Race and Ethnicity Concentration

Anderson, M., & McMinn, S. (2019, September 3). As Rising Heat Bakes U.S. Cities, The Poor Often Feel It Most. Npr.org; NPR Choice P

Kurn, D. M., Bretz, S. E., Huang, B., & Akbari, H. (1994). The potential for reducing urban air temperatures and energy consumption throuvegetative cooling (IBI-35320). Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). <u>https://doi.org/10.2172/i018633</u>.

Cost-Benefit Analysis

- Short-term investment, long-term savings
- Prevention of business, tourism, citizen interest being lost due to extreme heat
- Elimination/prevention of costs associated with hospital stays, ambulances, etc.
- Less stress on power grid during heat waves¹
- Potential increase in housing values aesthetic improvement¹

Measuring Success

- Three-pronged approach to success: operational, strategic, and tactical
- Onboarding third-party government consultants to monitor progress, measure success, and meet with community partners

High Surface Temperatures

Janice Brooks Bay Green Roofs

Eva Garcia Mendoza Plaza Green Roofs

Harry C. Levy Community Garden

5, (2021). Stormwater Best Management Practice Green Rods/Minimum Measure: Post Construction Stormwater Management In New Development and pment Subcategory: Innovative BMPs for Ster Plans. epa.gov. https://www.epa.gov/jsstem/lifes/documents/J2021-11/bmp-green-roofs.pdf no. L, & Ries, R. (2007). Comparative environmental life cycle assessment of green roofs. Building and Environment, 2017. EdD-2613.

Median Household Income

U.S. EPA. (2014a, February 28). Heet Island Effect. US EPA. <u>https://www.epa.eou/healtilands</u> U.S.E.P.A. (2016b, July 1). Climate change indicators: Heat-related deaths [Reports and Assessment for *Unawarena gou/filmate indicators in Immee change. Indicators: beat-related deaths* 115 EPA (2016). When 13: March Hand Immeer/filmationary and ExtraColl. There: Unawaren on onli